Minggu, 14 Juni 2015

Laporan Praktikum Genetika Acara 13 Genetika Populasi



Laporan Praktikum Genetika

Acara 13
Genetika Populasi


10807913_378345308998827_1726366733_n.jpg


Disusun Oleh :
Nama                           : Riski Meliya Ningsih
NPM                            : E1J014147
Hari/Tanggal                : Senin, 18 Mei  2015
Shift                             : Senin (10:00-12:00)
Kelompok                    : 3
Dosen Pembimbing     : Dwi Wahyuni Ganevianti
Co-As                          : Paulina Situmorang




LABORATORIUM AGRONOMI
FAKULTAS PERTANIAN
UNIVERSITAS BENGKULU
2015

BAB I
PENDAHULUAN

1.1    Dasar Teori
Genetika sebagai ilmu yang mempelajari segala hal yang mengenai keturunan dimulai sejak purbakala, ketika para petani mengetahui bahwa hasil pertaniannya dan ternaknya dapat ditingkatkan melalui persilangan.  Meskipun pengetahuan mereka masih sangat primitif namun mereka menyadari bahwa beberapa sifat yang baik pada tumbuhan dan hewan dapat diwariskan dari satu generasi ke generasi berikutnya.  Mereka menjalankan berbagai persilangan tanpa disadari pengetahuan karena belum di kenal adanya gen, apalagi hukum-hukum keturunan. (Suryo, 1990).

Genetika yang sesungguhnya baru dimulai pada decade kedua dari abad ke-19 setelah mendel menyajikan secara hati-hati hasil analisis beberapa percobaan persilangan yang dibuatnya pada tamanan ercis/kapri (Pisum sativum). (Suryo, 1990). Prinsip hukum Hardy Weinburg menyatakan bahwa frekuensi alel dan frekuensi genotipe dalam suatu populasi akan tetap konstan, yakni berada dalam kesetimbangan dari satu generasi ke generasi lainnya kecuali apabila terdapat pengaruh-pengaruh tertentu yang mengganggu kesetimbangan tersebut. Pengaruh-pengaruh tersebut meliputi perkawinan tak acak, mutasi, seleksi, ukuran populasi terbatas, hanyutan genetik, dan aliran gen. Adalah penting untuk dimengerti bahwa di luar laboratorium, satu atau lebih pengaruh ini akan selalu ada. Oleh karena itu, kesetimbangan Hardy-Weinberg sangatlah tidak mungkin terjadi di alam. Kesetimbangan genetik adalah suatu keadaan ideal yang dapat dijadikan sebagai garis dasar untuk mengukur perubahan genetik.
Frekuensi alel yang statis dalam suatu populasi dari generasi ke generasi mengasumsikan adanya perkawinan acak, tidak adanya mutasi, tidak adanya migrasi ataupun emigrasi, populasi yang besarnya tak terhingga, dan ketiadaan tekanan seleksi terhadap sifat-sifat tertentu.
Contoh paling sederhana dapat terlihat pada suatu lokus tunggal beralel ganda: alel yang dominan ditandai A dan yang resesif ditandai a. Kedua frekuensi alel tersebut ditandai p dan q secara berurutan; freq (A) = p; freq (a) = q; p + q = 1. Apabila populasi berada dalam kesetimbangan, maka freq (AA) = p2 untuk homoszigot AA dalam populasi, freq(aa) = q2 untuk homozigot aa, dan freq (Aa) = 2pq untuk heterozigot.
Konsep ini juga dikenal dalam berbagai nama: Kesetimbangan Hardy-Weinberg, Teorema Hardy-Weinberg, ataupun Hukum Hardy-Weinberg. Asas ini dinamakan dari G.H. Hardy dan Wilhelm heinberg. Syarat-syarat berlakunya hukum hardy weinberg.
1.      Ukuran populasi yang cukup besar.
Populasi dengan jumlah besar dapat dengan mudah memenuhi syarat hukum kesetimbangan frekuensi gen. Karena populasi yang besar dapat mempertemukan jodoh dari tiap-tiap pasangan alel secara acak.
2.      Populasi tersebut terisolasi.
Bila populasi kecil dan tidak terisolasi maka dapat dengan mudah kita memahami adanya perubahan frekuensi gen bila ada anggota yang berpindah tempat.
3.      Jumlah mutasi setimbang.
Mutasi yang setimbang tidak mengubah kesetimbangan anggun gen. jika mutasi gen tidak setimbang maka akan mengakibatkan berubahnya frekuensi gen dalam mutasi
4.      Perkawinan terjadi secara acak.
5.      Kemampuan reproduksi antar individu.
Terus kenapa kok terjadi evolusi padahal kata hadi weinberg evolusi tidak terjadi, hal ini disebabkan karena evolusi biologi (yaitu perubahan frekuensi gen di dalam populasi) terjadi karena syarat syarat berlakunya hukum hardy-weinberg  diatas tidak berlaku dalam kejadian alam. Perubahan anggun gen karena kebetulan, hal ini dapat terjadi terutama jika populasi tersebut berukuran kecil. Terjadi arus gen perpindahan penduduk yang tidak seimbang. Mutasi tidak berlangsung seimbang, mengakibatkan munculnya alel baru. Perkawinan yang tidak acak.. ada beberapa faktor yang mempengaruhi jumlah frekuensi gen, yaitu :
1.      Seleksi
Seleksi merupakan suatau proses yang melibatkan kekuatan – kekuatan untuk menentukan ternak mana yang boleh berkembang biak pada generasi selanjutnya. Kekuatan – kekuatan itu bisa di kontrol sepenuhnya oleh alam yang disebut seleksi alam. Jika kekuatan itu di kontrol oleh manusia maka prosesnya disebut seleksi buatan kedua macam seleksi itu akan merubah frekuensi gen yang sat relatif terhadap alelnya. Laju perubahan frekuensi pada seleksi buatan jika dibandingkan dengan seleksi alam.
Untuk mendemonstrasikan peran seleksi dalam mengubah frekuesni gen, diambil suatu contoh populasi yang terdiri dari beberapa ribu sap yang bertanduk dan yang tidak bertanduk. Jika diasunsikan bahwa frekuensi gen yang bertanduk dan yang tidak bertandu pada populasi tersebut masing– masing 0,5 ( bila terjadi kawin acak) maka sekitar 75% dari total sapi yang ada tidak bertanduk dan 25% bertanduk. Dari 75% sapi yang tidak bertanduk sebanyak 1/3 bergenotip hemozigot dan 2/3 bergenotip heterozigot
2.      Mutasi
Mutasi adalah suatu perubahan kimia gen yang berakibat berubahnya fungsi gen. Jika gen mengalami mutasi dengan kecepatan tetap maka frekuensi gen akan sedikit menurun, sedangkan frekuensi alel akan meningkat. Laju mutasi bervariasi dari suatu kejadian mutasi ke kejadian mutasi lain. Namun, laju relatif rendah ( kira – kira satu dalam satu juta pengandaan ge) sebagai gambaran, diambil contoh frekuensi gen merah pada sapi angus, yaitu antara 0.05-0.08. jika terjadi kawin acak maka akan dijumpai 25-64 ekor sapi merh dari setiap 10.000 kelahiran. Anak sapi yang berwarna merah dan juga tetua yang heterozigot akan dikeluarkan dari peternakan. Secara teoritis frekuensi gen merah akan menurun mendekati angkan nol, namun kenyataan frekuensi gen merah tetap anata 0.05-0.08 dari suatu generasi ke generasi berikutnya hal itu bisa dijalaskan dengan mengunakkan teori mutasi. Diduga bahwa laju mutasi gen hitam menjadi gen merah sama dengan laju seleksi terhadaap gen merah sehingga tercapai suatu keseimbangan.
3.      Pencampuran populasi
Percampuran dua populasi yang frekuensi gennya berbeda dapat mengubah frekuensi gen tertentu. Frekuenssi gen ini merupakan rataan dari frekuensi gen dari dua populasi yang bercampur.
Jika seorang peternak memiliki 150 ekor sapi dengan frekuensi bertanduk dengan = 0.95 ( bila terjadi kawin acak) maka sekitar 90% dari sapi – sapinya akan bertanduk. Selanjutnya, jika diasumsikan bahwa ada enam pejatan baru yang diamsukkan ke peternakan utnuk memperbaiki mutu geneteik terna – ternak yang ada. Dari enam pejantan dimasukkan terdapat satu ekor yang bertanduk, dua ekor yang tidak bertanduk heterozigot dan tiga ekor yang tidak bertanduk homozigot. Frekuensi gen bertanduk pada kelompok pejantan = 1/6 = 0.033. dengan asumsi bahwa tidak ada sapi lain yang masuk kedalam peternakan maka frekuensi gen bertanduk pada populasi itu setelah terjadi kawin acak, selama satu generasi ( 0.950 + 0.333) / 2 = 0.064
4.      Silang dalam (inbreeding ) dan sialng luar (outbreeding)
Silang dalam merupakan salah satu bentuk isolasi secara genetik. Jika suatu populais terisolasi, silang dalam cenderung terjadi karena adanya keterbatasan pilihan dalam proses perkawinan. Jika silang dalam terjadi anatara grup ternak yang tidak terisolasi secara geografis maka pengaruhnya juga yang sama. Oleh sebab itu, silang dalam merupakan suatu isolasi buatan. Sebenarnya silang dalam tidak merubah frekuensi gen awal pada saat proses silang dalam dimulai. Jika terjadi perubahan frekuensi gen maka perubahan itu disebabkan oleh adanya seleksi, mutasi dan pengaruh sampel acak. Jika silang luar dilakukan pada suatu populasi yang memilik rasio jenis kelamin yang sama dengan frekuensi gen pada suatu lokus yang sama pada kedua jenis kelamin maka frekuensi gen tidak akan berubah akibat pengaruh langsung silang luar.
5.      Genetic drift
Genetic drift merupakan perubahan frekuensi gen yang mendadak. Perubahan frekuensi gen yang mendadak biasanya terjadi pada kelompok kecil ternak yang di pindahkan untuk tujuan pemulian ternak atau dibiakan. Jika kelompok ternak diisolasi dari kelompok ternak asalnya maka frekuensi gen yang terbentuk pada populasi baru dapat berubah. Perubahan frekuensi gen yang mendadak dapat pula disebabkan oleh bencana alam, misal matinya sebagian besar ternak yang memiliki gen tertentu (Ronny Rachman Noor, 2008).
Perubahan Perbandingan Frekuensi Gen (Genotip) pada Populasi Hukum Hardy-Weinberg tidak berlaku untuk proses evolusi karena hukum Hardy-Weinberg tidak selalu menghasilkan angka perbandingan yang tetap dari generasi ke generasi. Kenyataannya, frekuensi gen dalam suatu populasi selalu mengalami perubahan atau menyimpang dari hukum Hardy-Weinberg. Beberapa faktor yang menyebabkan perubahan keseimbangan hukum Hardy-weinberg dalam populasi yaitu adanya:
  1. Hanyutan genetik (genetic drift),
  2. Arus gen (gene flow),
  3. Mutasi,
  4. Perkawinan tidak acak, dan
  5. Seleksi alam. 
Masing-masing penyebab perubahan kesetimbangan hukum Hardy-Weinberg atau perubahan frekuensi genetik populasi merupakan kondisi kebalikan yang dibutuhkan untuk mencapai kesetimbangan Hardy-weinberg. Hukum ini menyatakan bahwa dalam suatu kondisi tertentu yang stabil, frekuensi gen dan frekuensi genotif akan tetap konstan dari satu generasi ke generasi dalam suatu populasi yang berbiak seksual, bila syarat berikut dipenuhi:
  1. Genotif yang ada memiliki viabilitas (kemampuan hidup) dan fertilitas (kesuburan) yang sama
  2. Perkawinan yang terjadi berlangsung secara acak
  3. Tidak ada mutasi gen
  4. Tidak terjadi migrasi
  5. Tidak terjadi seleksi
Hukum Hardy-Weinberg ini berfungsi sebagai parameter evolusi dalam suatu populasi. Bila frekuensi gen dalam suatu populasi selalu konstan dari generasi ke generasi, maka populasi tersebut tidak mengalami evolusi. Bila salah satu saja syarat tidak dipenuhi maka frekuensi gen berubah, artinya populasi tersebut telah dan sedang mengalami evolusi.(Anonim,2012)
Penerapan dan Teori Evolusi  Hukum Hardy–Weinberg bila frekuensi gen yang satu dinyatakan dengan simbol p dan alelnya dengan simbol q, maka secara matematis hukum tersebut dapat ditulis misalnya bila dalam suatu populasi masyarakat terdapat perasa kertas PTC 64% sedangkan bukan perasa PTC (tt) 36%. Berapa frekuensi gen perasa (T) dan gen bukan perasa (t) dalam populasi tersebut dan berapakah rasio genotifnya.
Populasi mendelian yang berukuran besar sangat memungkinkan terjadinya kawin acak (panmiksia) di antara individu-individu anggotanya. Artinya, tiap individu memiliki peluang yang sama untuk bertemu dengan individu lain, baik dengan genotipe yang sama maupun berbeda dengannya. Dengan adanya sistem kawin acak ini, frekuensi alel akan senantiasa konstan dari generasi ke generasi. Prinsip ini dirumuskan oleh G.H. Hardy, ahli matematika dari Inggris, dan W.Weinberg, dokter dari Jerman,. sehingga selanjutnya dikenal sebagai hukum keseimbangan Hardy-Weinberg.
Di samping kawin acak, ada persyaratan lain yang harus dipenuhi bagi berlakunya hukum keseimbangan Hardy-Weinberg, yaitu tidak terjadi migrasi, mutasi, dan seleksi. Dengan perkatan lain, terjadinya peristiwa-peristiwa ini serta sistem kawin yang tidak acak akan mengakibatkan perubahan frekuensi alel. Deduksi terhadap hukum keseimbangan Hardy-Weinberg meliputi tiga langkah, yaitu :
1)      Dari tetua kepada gamet-gamet yang dihasilkannya
2)      Dari penggabungan gamet-gamet kepada genotipe zigot yang dibentuk
3)      Dari genotipe zigot kepada frekuensi alel pada generasi keturunan.
Secara lebih rinci ketiga langkah ini dapat dijelaskan sebagai berikut. Kembali kita misalkan bahwa pada generasi tetua terdapat genotipe AA, Aa, dan aa, masing-masing dengan frekuensi P, H, dan Q.  Sementara itu, frekuensi alel A adalah p, sedang frekuensi alel a adalah q. Dari populasi generasi tetua ini akan dihasilkan dua macam gamet, yaitu A dan a. Frekuensi gamet A sama dengan frekuensi alel A (p). Begitu juga, frekuensi gamet a sama dengan frekuensi alel a (q). Dengan berlangsungnya kawin acak, maka terjadi penggabungan gamet A dan a secara acak pula. Oleh karena itu, zigot-zigot yang terbentuk akan memilki frekuensi genotipe sebagai hasil kali frekuensi gamet yang bergabung.
Kita ketahui bahwa frekuensi gene pool dari generasi ke generasi pada waktu ini (populasi hipotesis) adalah 0,9 dan 0,1; dan perbandingan genotip adalah 0,81; 0,81; dan 0,01. Dengan angka – angka ini kita akan mendapatkan harga yang sama pada generasi berikutnya. Hasil yang sama ini akan kita jumpai pada generasi seterusnya, frekuensi genetis dan perbandingan genotip tidak berubah. Dapat kita simpulkan bahwa perubahan evolusi tidak terjadi. Hal ini dapat diketahui oleh Hardy (1908) dari Cambrige University dan Weinberg dari jerman yang bekerja secara terpisah. Secara singkat dikatakan di dalam rumus Hardy-Weinberg
“Di bawah suatu kondisi yang stabil, baik frekuensi gen maupun perbandingan genotip akan tetap (konstan) dari generasi ke generasi pada populasi yang berbiak secara seksual”

1.2 Tujuan
1.      Mengetahui prinsi-prinsip genetika populasi
2.      Mampu mencari dan membuktikan keseimbangan Hardy-Weinberg



BAB II
METODOLOGI

2.1  Alat dan Bahan
1.      File genetika populasi
2.      LCD

2.2  Cara Kerja
1.      Mengamati gambar-gambar yang ada pada slide
2.      Mencari dan membuktikan populasi yang ada pada slide sudah mencapai keseimbangan Hardy-Weinberg






















BAB III
HASIL

\





























BAB IV
PEMBAHASAN






























BAB V
KESIMPULAN

5.1  Kesimpulan

5.2  Saran
Kami mengucapkan terima kasih kepada dosen pengampu serta pihak-pihak yang membantu terselesainya laporan ini, semoga bermanfaat bagi para pembaca dan kami mengharapkan kritik dan saran demi sempurnanya laporan ini





















DAFTAR PUSTAKA


Campbell, Neil A, dkk. 2002. Biologi Edisi Kelima Jilid 1. Jakarta: Erlangga
Suryo. 2005. Genetika Strata 1. Yogyakarta: Gadjah Mada University Press


Tidak ada komentar:

Posting Komentar